Memory Bounded A* algorithm
nodes =f
A [[W. 6], [^{\prime}V,3]]
B: [[A6]. [C. 3], [TV. 211.
C: [[B, 3] [^{\prime}D^{\prime},1] [ES].
D: [[B. 2], ['C, 1], [E, 8]].
E: [[^{\prime}C^{\prime\prime},S],[^{\prime\prime}DY,S],[T,S],I [T,5],[T^{\prime},5]]
\div[I^{2}A^{2},3],[G^{2},1],[^{2}H^{2},7]]
'G': [[F, 1], [T, 3]],
'W': [[^{\prime}F,T],[TT,2]]
T =[I^{\prime}G^{\prime\prime},3],[^{\prime}H^{\prime},2],[T^{\prime},51,[T^{\prime},3]].
'J: [[^{\prime}E^{\prime},5],[^{\prime}\Gamma,3]]
1
h=1
A^{\prime}:10
B^{\prime}:8
C^{\prime}:5
D^{\prime}:7.
T:3.
T:6,
{}G^{\prime}:5.
H^{\prime}:3
T:1.
J^{\prime}:0
def astar(start, goal):
opened [] closed
visited = set() opened.append([start,
h[start]])while opened:
min - 1000
val="
for i in opened:if
i[1] <min:min
-[1]
val - i[0]
closed.append(val)
visited.add(val)
if goal not in closed for i in nodes[val]:
if i[0] not in visited: opened.append([i[0], (min-h[val]+[1]+b[i[0]
else:
break opened.remove([val, min])
closed closed[::-1] min 1000 for i in opened:if i[1]<min:min =i[1] lens = len(closed)i = 0 while i<lcns-1 for j in nodes[closed[i]]: nei.append(j[0]) if closed[i+1] not in nei:del closed[i+1]
nei = []
lens--1
i+=1
closed closed[::-1]
return closed, min
#Start-'A', Goal = 'J'
print(astar('A', 'J'))
OUTPUT:
([^{\prime}A^{\prime},^{\prime}F^{\prime},^{\prime}G^{\prime},^{\prime}I^{\prime},^{\prime}J^{\prime}],10)
Comments
Post a Comment