Memory Bounded A* algorithm

 nodes =f


A [[W. 6], [^{\prime}V,3]]


B: [[A6]. [C. 3], [TV. 211.


C: [[B, 3] [^{\prime}D^{\prime},1] [ES].


D: [[B. 2], ['C, 1], [E, 8]].


E: [[^{\prime}C^{\prime\prime},S],[^{\prime\prime}DY,S],[T,S],I [T,5],[T^{\prime},5]]


\div[I^{2}A^{2},3],[G^{2},1],[^{2}H^{2},7]]


'G': [[F, 1], [T, 3]],


'W': [[^{\prime}F,T],[TT,2]]


T =[I^{\prime}G^{\prime\prime},3],[^{\prime}H^{\prime},2],[T^{\prime},51,[T^{\prime},3]].


'J: [[^{\prime}E^{\prime},5],[^{\prime}\Gamma,3]]


1


h=1


A^{\prime}:10


B^{\prime}:8


C^{\prime}:5


D^{\prime}:7.


T:3.


T:6,


{}G^{\prime}:5.


H^{\prime}:3


T:1.


J^{\prime}:0


def astar(start, goal):


opened [] closed


visited = set() opened.append([start,


h[start]])while opened:


min - 1000


val="


for i in opened:if


i[1] <min:min





-[1]


val - i[0]


closed.append(val)


visited.add(val)


if goal not in closed for i in nodes[val]:


if i[0] not in visited: opened.append([i[0], (min-h[val]+[1]+b[i[0]


else:


break opened.remove([val, min])


closed closed[::-1] min 1000 for i in opened:if i[1]<min:min =i[1] lens = len(closed)i = 0 while i<lcns-1 for j in nodes[closed[i]]: nei.append(j[0]) if closed[i+1] not in nei:del closed[i+1]


nei = []


lens--1


i+=1


closed closed[::-1]


return closed, min


#Start-'A', Goal = 'J'


print(astar('A', 'J'))


OUTPUT:


([^{\prime}A^{\prime},^{\prime}F^{\prime},^{\prime}G^{\prime},^{\prime}I^{\prime},^{\prime}J^{\prime}],10)





Comments

Popular posts from this blog

Pos using Seq to seq